Section 2.5 Evaluating Limits Algebraically

(1) Determinate and Indeterminate Forms
(2) Limit Calculation Techniques
(A) Direct Substitution
(B) Simplification
(C) Conjugation
(D) The Squeeze Theorem
(3) Limits of Piecewise-defined and Absolute-Value Functions

The Form of a Limit

The form of a limit $\lim _{x \rightarrow c} \square$ is the expression resulting from substituting $x=c$ into \square.

The form of a limit is not the same as its value! It is a tool for inspecting the limit.
$\lim _{x \rightarrow 0} x^{\arctan (x)}:$ form " 0^{0} "
$\lim _{x \rightarrow 0} \cos (x)^{\frac{1}{x}}:$ form " $1{ }^{\infty}$ "

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}(1+x)^{\frac{1}{x}}: \text { form " } \infty^{0 "} \\
& \lim _{x \rightarrow 0^{+}} \ln (x) \sin (x): \text { form " }-\infty 0 \text { " }
\end{aligned}
$$

The Form of a Limit

Determinate Forms are forms which always represent the same limit. For example, the form " $\frac{1}{\infty}$ " always represents a limit which equals 0 . Assume $c \neq 0$,

$$
\begin{array}{lcc}
" \frac{c}{0} " \rightarrow \pm \infty & " \infty \cdot \infty " \rightarrow \infty & " \infty+\infty " \rightarrow \infty \\
" \frac{c}{+\infty} " \rightarrow 0 & "-\infty \cdot \infty " \rightarrow-\infty & "-\infty-\infty " \rightarrow-\infty
\end{array}
$$

Indeterminate Forms are called indeterminate because they represent limits which may or may not exist and may be equal to any value. The form itself does not indicate the value of the limit. There are 7 indeterminate forms:

$$
\frac{0}{0} \quad \pm \frac{\infty}{\infty} \quad \infty-\infty \quad \pm 0 \cdot \infty \quad 1^{\infty} \quad 0^{0} \quad \infty^{0}
$$

We can use direct substitution to evaluate limits of functions that are continuous (Section 2.4) or have determinate forms.

Simplification and Limits

If $f(x)=g(x)$ for values ${ }^{* *}$ near** $x=a$, then

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)
$$

$$
\frac{(x-1)(x+1)}{(x-1)(x+2)}=\frac{x+1}{x+2} \text { when } x \neq 1
$$

Conjugation

The expression $a+b$ is conjugate to the expression $a-b$.

$$
a^{2}-b^{2}=(a-b)(a+b)
$$

Rationalize the denominator: Rationalize the numerator:

$$
\frac{7}{3+\sqrt{3}}
$$

$$
\frac{\sqrt{12}-\sqrt{3}}{2}
$$

Simplification and Conjugation Examples

(Example I) Evaluate the following limits:
(a) $\lim _{x \rightarrow-1} \frac{-2 x^{2}+4 x+6}{x^{2}-x-2}$
(c) $\lim _{t \rightarrow 0} \frac{(t+3)^{2}-9}{t}$
(b) $\lim _{h \rightarrow 0} \frac{\sqrt{h^{2}+4}-2}{h^{2}}$
(d) $\lim _{x \rightarrow-7} \frac{\frac{1}{7}+\frac{1}{x}}{7+x}$

Limits of Comparable Functions

If $f(x) \leq g(x)$ for values of x near a then

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

if both limits exist.

The Squeeze Theorem

$$
\begin{aligned}
& \text { If } f(x) \leq g(x) \leq h(x) \text { for values of } x \\
& \text { near } a \text { and }
\end{aligned}
$$

$$
\lim _{x \rightarrow a} f(x)=L=\lim _{x \rightarrow a} h(x)
$$

then $\lim _{x \rightarrow a} g(x)=L$.

"Walking a drunk through a door"

The Squeeze Theorem

If $f \leq g \leq h$ for values near $x=a$ and

$$
\lim _{x \rightarrow a} f(x)=L=\lim _{x \rightarrow a} h(x)
$$

then $\lim _{x \rightarrow a} g(x)=L$.
$-1 \leq \sin (x) \leq 1$

$-1 \leq \cos (x) \leq 1$

Example II: The Squeeze Theorem

Evaluate

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)
$$

Piecewise-defined and Absolute Value Functions

Evaluating the limit of a piecewise-defined function differs from evaluating the limit of elementary functions only when the limiting value is a break point. ($\{-2,0,2\}$ below)

$$
\begin{aligned}
& f(x)= \begin{cases}x & x<-2 \\
\sin (x) & -2 \leq x \leq 0 \\
-x^{2} & 0<x<2 \\
\cos (x) & x \geq 2\end{cases} \\
& f(x)= \begin{cases}x & x<-2 \\
\sin (x) & -2 \leq x \leq 0 \\
-x^{2} & 0<x<2 \\
\cos (x) & x \geq 2\end{cases}
\end{aligned}
$$

Absolute value functions are secretly piecewise functions!

$$
|x-a|= \begin{cases}-(x-a) & x<a \\ x-a & x>a\end{cases}
$$

When confronted with an absolute valued function, calmly write it as a piecewise function before any other step.

